Vertical Velocity Profiles in Convectively Coupled Equatorial Waves and MJO: New Diagnoses of Vertical Velocity Profiles in the Wavenumber–Frequency Domain
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Vertical Velocity Profiles in Convectively Coupled Equatorial Waves and MJO: New Diagnoses of Vertical Velocity Profiles in the Wavenumber–Frequency Domain

Filetype[PDF-4.22 MB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A new diagnostic framework is developed and applied to ERA-Interim to quantitatively assess vertical velocity (omega) profiles in the wavenumber–frequency domain. Two quantities are defined with the first two EOF–PC pairs of omega profiles in the tropical ocean: a top-heaviness ratio and a tilt ratio. The top-heaviness and tilt ratios are defined, respectively, as the cospectrum and quadrature spectrum of PC1 and PC2 divided by the power spectrum of PC1. They represent how top-heavy an omega profile is at the convective maximum, and how much tilt omega profiles contain in the spatiotemporal evolution of a wave. The top-heaviness ratio reveals that omega profiles become more top-heavy as the time scale (spatial scale) becomes longer (larger). The MJO has the most top-heavy profile while the eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves have the most bottom-heavy profiles. The tilt ratio reveals that the Kelvin, WIG, EIG, and mixed Rossby–gravity (MRG) waves, categorized as convectively coupled gravity waves, have significant tilt in the omega profiles, while the equatorial Rossby (ER) wave and MJO, categorized as slow-moving moisture modes, have less tilt. The gross moist stability (GMS), cloud–radiation feedback, and effective GMS were also computed for each wave. The MJO with the most top-heavy omega profile exhibits high GMS, but has negative effective GMS due to strong cloud–radiation feedbacks. Similarly, the ER wave also exhibits negative effective GMS with a top-heavy omega profile. These results may indicate that top-heavy omega profiles build up more moist static energy via strong cloud–radiation feedbacks, and as a result, are more preferable for the moisture mode instability.
  • Keywords:
  • Source:
    Journal of the Atmospheric Sciences, 77(6), 2139-2162
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1