Circulation Factors Determining the Propagation Speed of the Madden–Julian Oscillation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Circulation Factors Determining the Propagation Speed of the Madden–Julian Oscillation

Filetype[PDF-1.88 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Description:
    The eastward propagating Madden–Julian oscillation (MJO) events exhibit various speeds ranging from 1 to 9 m s−1, but what controls the propagation speed remains elusive. This study attempts to address this issue. It reveals that the Kelvin wave response (KWR) induced by the MJO convection is a major circulation factor controlling the observed propagation speed of the MJO, with a stronger KWR corresponding to faster eastward propagation. A stronger KWR can accelerate the MJO eastward propagation by enhancing the low-level premoistening and preconditioning to the east of the MJO deep convection. The strength of the KWR is affected by the background sea surface temperature (SST). When the equatorial central Pacific SST warms, the zonal scale of the Indo-Pacific warm pool expands, which increases the zonal scale of the MJO, favoring enhancing the KWR. This effect of warm-pool zonal scale has been verified by idealized experiments using a theoretical model. The findings here shed light on the propagation mechanism of the MJO and provide a set of potential predictors for forecasting the MJO propagation.
  • Source:
    Journal of Climate, 33(8), 3367-3380
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26