Tropical and Midlatitude Impact on Seasonal Polar Predictability in the Community Earth System Model
-
2019
Details
-
Journal Title:Journal of Climate
-
Personal Author:
-
NOAA Program & Office:
-
Description:The impact on seasonal polar predictability from improved tropical and midlatitude forecasts is explored using a perfect-model experiment and applying a nudging approach in a GCM. We run three sets of 7-month long forecasts: a standard free-running forecast and two nudged forecasts in which atmospheric winds, temperature, and specific humidity (U, V, T, Q) are nudged toward one of the forecast runs from the free ensemble. The two nudged forecasts apply the nudging over different domains: the tropics (30°S–30°N) and the tropics and midlatitudes (55°S–55°N). We find that the tropics have modest impact on forecast skill in the Arctic or Antarctica both for sea ice and the atmosphere that is mainly confined to the North Pacific and Bellingshausen–Amundsen–Ross Seas, whereas the midlatitudes greatly improve Arctic winter and Antarctic year-round forecast skill. Arctic summer forecast skill from May initialization is not strongly improved in the nudged forecasts relative to the free forecast and is thus mostly a “local” problem. In the atmosphere, forecast skill improvement from midlatitude nudging tends to be largest in the polar stratospheres and decreases toward the surface.
-
Keywords:
-
Source:Journal of Climate, 32(18), 5997-6014
-
DOI:
-
ISSN:0894-8755 ; 1520-0442
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:urn:sha256:b18fc33c722fbc859651edd2ebd9d37043a1c3aafa47bc7257e2b9b6bc691042
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like