Asymmetry in Subseasonal Surface Air Temperature Forecast Error with Respect to Soil Moisture Initialization
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Asymmetry in Subseasonal Surface Air Temperature Forecast Error with Respect to Soil Moisture Initialization

Filetype[PDF-9.79 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Soil moisture (W) helps control evapotranspiration (ET), and ET variations can in turn have a distinct impact on 2-m air temperature (T2M), given that increases in evaporative cooling encourage reduced temperatures. Soil moisture is accordingly linked to T2M, and realistic soil moisture initialization has, in previous studies, been shown to improve the skill of subseasonal T2M forecasts. The relationship between soil moisture and evapotranspiration, however, is distinctly nonlinear, with ET tending to increase with soil moisture in drier conditions and to be insensitive to soil moisture variations in wetter conditions. Here, through an extensive analysis of subseasonal forecasts produced with a state-of-the-art seasonal forecast system, this nonlinearity is shown to imprint itself on T2M forecast error in the conterminous United States in two unique ways: (i) the T2M forecast bias (relative to independent observations) induced by a negative precipitation bias tends to be larger for dry initializations, and (ii) on average, the unbiased root-mean-square error (ubRMSE) tends to be larger for dry initializations. Such findings can aid in the identification of forecasts of opportunity; taken a step further, they suggest a pathway for improving bias correction and uncertainty estimation in subseasonal T2M forecasts by conditioning each on initial soil moisture state.
  • Keywords:
  • Source:
    Journal of Hydrometeorology, 22(10), 2505-2519
  • DOI:
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1