Roles of the Moisture and Wave Feedbacks in Shaping the Madden–Julian Oscillation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Roles of the Moisture and Wave Feedbacks in Shaping the Madden–Julian Oscillation

Filetype[PDF-2.46 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study investigates the moisture and wave feedbacks in the Madden–Julian oscillation (MJO) dynamics by applying the general three-way interaction theoretical model. The three-way interaction model can reproduce observed large-scale characteristics of the MJO in terms of horizontal quadrupole-vortex structure, vertically tilted structure led by planetary boundary layer (PBL) convergence, slow eastward propagation with a period of 30–90 days, and planetary-scale circulation. The moisture feedback effects can be identified in this model by using diagnostic thermodynamic and momentum equations, and the wave feedback effects are investigated by using a diagnostic moisture equation. The moisture feedback is found to be responsible for producing the MJO dispersive modes when the convective adjustment process is slow. The moisture feedback mainly acts to reduce the frequency and growth rate of the short waves, while leaving the planetary waves less affected, so neglecting the moisture feedback is a good approximation for the wavenumber-1 MJO. The wave feedback is shown to slow down the eastward propagation and increase the growth rate of the planetary waves. The wave feedback becomes weak when the convective adjustment time increases, so neglecting the wave feedback is a good approximation for the MJO dynamics during a slow adjustment process. Sensitivities of these two feedbacks to other parameters are also discussed. These theoretical findings suggest that the two feedback processes, and thus the behaviors of the simulated MJO mode, should be sensitive to the parameters used in cumulus parameterizations.
  • Keywords:
  • Source:
    Journal of Climate, 30(24), 10275-10291
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1