A Multiresolution Ensemble Hybrid 4DEnVar with Variable Ensemble Sizes to Improve Global and Tropical Cyclone Track Numerical Prediction
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Multiresolution Ensemble Hybrid 4DEnVar with Variable Ensemble Sizes to Improve Global and Tropical Cyclone Track Numerical Prediction

Filetype[PDF-5.09 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The current global operational four-dimensional ensemble-variational (4DEnVar) data assimilation (DA) system at NCEP adopts a background ensemble at a reduced resolution, which restricts the range of spatial scales that the ensemble background error covariance can resolve. A prior study developed a multiresolution ensemble 4DEnVar method and determined that this approach can provide a comparable forecast to an approach using solely high-resolution members, while substantially reducing the computational cost. This study further develops the multiresolution ensemble 4DEnVar approach to allow for a flexible number of low- and high-resolution ensemble members as well as varying localization length scales between the high- and low-resolution ensembles. Three 4DEnVar experiments with the same computational costs are compared. The first experiment has an 80-member high-resolution background ensemble with single-scale optimally tuned localization (SR-High). The second and third experiments utilize the multiresolution background ensembles. One has 130 low-resolution and 40 high-resolution members (MR170) while the other has 180 low-resolution members and 24 high-resolution members (MR204). Both multiresolution ensemble experiments utilize differing localization radii with ensemble resolution. Despite having the same costs, both MR170 and MR204 improves global forecasts and decreases tropical cyclone track errors for up to 5 days’ lead time compared to SR-High. Improvements are most apparent in larger-scale features, such as jet streams and the environmental steering flow of tropical cyclones. Additionally, MR170 outperforms MR204 in terms of global and tropical cyclone track forecasts, demonstrating the value of both increasing sampling at large scales and retaining substantial information at small scales.
  • Keywords:
  • Source:
    Monthly Weather Review, 151(5), 1145-1166
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1