Examining the Impact of SMAP Soil Moisture Retrievals on Short-Range Weather Prediction under Weakly and Strongly Coupled Data Assimilation with WRF-Noah
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Examining the Impact of SMAP Soil Moisture Retrievals on Short-Range Weather Prediction under Weakly and Strongly Coupled Data Assimilation with WRF-Noah

Filetype[PDF-4.68 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • NOAA Program & Office:
  • Description:
    Remotely sensed soil moisture data are typically incorporated into numerical weather models under a framework of weakly coupled data assimilation (WCDA), with a land surface analysis scheme independent from the atmospheric analysis component. In contrast, strongly coupled data assimilation (SCDA) allows simultaneous correction of atmospheric and land surface states but has not been sufficiently explored with land surface soil moisture data assimilation. This study implemented a variational approach to assimilate the Soil Moisture Active Passive (SMAP) 9-km enhanced retrievals into the Noah land surface model coupled with the Weather Research and Forecasting (WRF) Model under a framework of both WCDA and SCDA. The goal of the study is to quantify the relative impact of assimilating SMAP data under different coupling frameworks on the atmospheric forecasts in the summer. The results of the numerical experiments during July 2016 show that SCDA can provide additional benefits on the forecasts of air temperature and humidity compared to WCDA. Over the U.S. Great Plains, assimilation of SMAP data under WCDA reduces a warm bias in temperature and a dry bias in humidity by 7.3% and 19.3%, respectively, while the SCDA case contributes an additional bias reduction of 2.2% (temperature) and 3.3% (humidity). While WCDA leads to a reduction of RMSE in temperature forecasts by 4.1%, SCDA results in additional reduction of RMSE by 0.8%. For the humidity, the reduction of RMSE is around 1% for both WCDA and SCDA.
  • Source:
    Monthly Weather Review, 147(12), 4345-4366
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26