An Evaluation of Snowband Predictability in the High-Resolution Rapid Refresh
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

An Evaluation of Snowband Predictability in the High-Resolution Rapid Refresh

Filetype[PDF-2.98 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Narrow regions of intense, banded snowfall present hazardous travel conditions due to rapid onset, high precipitation rates, and lowered visibility. Despite their importance, there are few verification studies of snowbands in operational forecast models. The objective of this study is to evaluate the ability of the High-Resolution Rapid Refresh (HRRR) model to predict snowbands in the United States east of the Rocky Mountains. An automated band-detection algorithm was applied to a 3-yr period of simulated and observed radar reflectivity to compare snowband climatologies. This algorithm uses the distributions of reflectivities in contiguous precipitation regions to determine a band intensity threshold. The predictability of snowbands on a case-by-case basis was also evaluated using an object-oriented approach. The distribution of HRRR forecast banding resembles that of the observations, but with a significant positive frequency bias. This may partially be due to underrepresentation of observed bands in our verification dataset due to limited radar coverage in portions of the central United States. On a case-by-case basis, traditional skill metrics indicate limited predictability, but allowing for small timing discrepancies dramatically improves scores. Object-oriented verification yields mixed results, with 30% of forecasts receiving a score indicative of a well-predicted event. However, 69% of cases have at least one forecast lead demonstrating skill, suggesting the HRRR is successful in depicting environments conducive to band formation. These results suggest adopting a probabilistic, ensemble approach, and indicate that the deterministic HRRR is best suited for the identification of regions of elevated snowband risk and not precise timing or location information.
  • Keywords:
  • Source:
    Weather and Forecasting, 34(5), 1477-1494
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1