Balanced Response of an Axisymmetric Tropical Cyclone to Periodic Diurnal Heating
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Balanced Response of an Axisymmetric Tropical Cyclone to Periodic Diurnal Heating

Filetype[PDF-1.70 MB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • NOAA Program & Office:
  • Description:
    A modified version of the Sawyer–Eliassen equation is applied to determine the impact of periodic diurnal heating on a balanced vortex. The TC diurnal cycle is a coherent signal that arises in the cirrus canopy. However, despite thorough documentation in the literature, the dynamical mechanism remains unknown. Recent work demonstrates that periodic radiative heating in the TC outflow layer is linked with an anomalous upper-level circulation; this heating is also associated with a cycle of latent heating in the lower troposphere that corresponds to a cycle in storm intensity. Using a method that is analogous to the Sawyer–Eliassen equation, but for solutions having the same time scale as time-periodic forcing, these distributions are analyzed to determine the effect of periodic diurnal heating on an axisymmetric vortex. Results for periodic heating in the lower troposphere show an overturning circulation that resembles the Sawyer–Eliassen solution. The model simulates positive perturbations in the azimuthal wind field of 2.5 m s−1 near the radius of maximum wind. Periodic heating near the top of the vortex produces a local overturning response in the region of heating and an inertia–buoyancy wave response in the storm environment. Comparison of the results from the modified Sawyer–Eliassen equation to those of an idealized axisymmetric solution for both heating distributions shows similarities in the structure of the perturbation wind fields, suggesting that the axisymmetric TC diurnal cycle is primarily a balanced response driven by periodic heating.
  • Source:
    Journal of the Atmospheric Sciences, 74(10), 3325-3337
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26