Understanding and Reducing Warm and Dry Summer Biases in the Central United States: Analytical Modeling to Identify the Mechanisms for CMIP Ensemble Error Spread
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Understanding and Reducing Warm and Dry Summer Biases in the Central United States: Analytical Modeling to Identify the Mechanisms for CMIP Ensemble Error Spread

Filetype[PDF-3.53 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Most climate models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) still suffer pronounced warm and dry summer biases in the central United States (CUS), even in high-resolution simulations. We found that the cloud base definition in the cumulus parameterization was the dominant factor determining the spread of the biases among models and those defining cloud base at the lifting condensation level (LCL) performed the best. To identify the underlying mechanisms, we developed a physically based analytical bias model (ABM) to capture the key feedback processes of land–atmosphere coupling. The ABM has significant explanatory power, capturing 80% variance of temperature and precipitation biases among all models. Our ABM analysis via counterfactual experiments indicated that the biases are attributed mostly by surface downwelling longwave radiation errors and second by surface net shortwave radiation errors, with the former 2–5 times larger. The effective radiative forcing from these two errors as weighted by their relative contributions induces runaway temperature and precipitation feedbacks, which collaborate to cause CUS summer warm and dry biases. The LCL cumulus reduces the biases through two key mechanisms: it produces more clouds and less precipitable water, which reduce radiative energy input for both surface heating and evapotranspiration to cause a cooler and wetter soil; it produces more rainfall and wetter soil conditions, which suppress the positive evapotranspiration–precipitation feedback to damp the warm and dry bias coupling. Most models using non-LCL schemes underestimate both precipitation and cloud amounts, which amplify the positive feedback to cause significant biases.
  • Keywords:
  • Source:
    Journal of Climate, 36(7), 2035-2054
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1