Leveraging scientific uncertainty in fisheries management for estimating among-assessment variation in overfishing limits
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Leveraging scientific uncertainty in fisheries management for estimating among-assessment variation in overfishing limits

Filetype[PDF-1.03 MB]



Details:

  • Journal Title:
    ICES Journal of Marine Science
  • Description:
    Fisheries management systems can utilize probability-based harvest control rules to incorporate scientific uncertainty and manager risk tolerance when setting catch limits. A precautionary buffer that scales with scientific uncertainty is used to calculate the acceptable biological catch from the overfishing limit (OFL) for US West Coast groundfish and coastal pelagic species. A previous analysis formed the basis for estimating scientific uncertainty as the among-assessment variation in estimates of historical spawning biomass time-series. This “historical biomass” approach may underestimate scientific uncertainty, because the OFL is a function of estimated exploitable biomass and fishing mortality. We developed a new approach that bases the calculation of scientific uncertainty on projected spawning biomass (SSB) and OFLs, accounting for uncertainty in recruitment and among-assessment variation. OFL projections yielded a higher estimate of uncertainty than SSB (0.502 vs. 0.413 for 25-year projections and 0.562 vs. 0.384 for a 1-year projection, assuming a deterministic stock-recruitment relationship). Assuming a stochastic stock-recruitment relationship produced smaller estimates of uncertainty (0.436, 25-year OFL projections; 0.452, 1-year OFL projections; 0.360, 25-year SSB projections; 0.318, 1-year SSB projections). The projection-based approach presented herein is applicable across stocks and regions that conduct assessments with sufficient and consistent outputs for calculating an OFL.
  • Source:
    ICES Journal of Marine Science, 77(2), 515-526
  • ISSN:
    1054-3139;1095-9289;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26