Modelling of Water Surface Temperature of Three Lakes on the Tibetan Plateau using a Physically Based Lake Model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Modelling of Water Surface Temperature of Three Lakes on the Tibetan Plateau using a Physically Based Lake Model

Filetype[PDF-1.26 MB]



Details:

  • Journal Title:
    Atmosphere-Ocean
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study was carried out to quantify the physical processes of lakes in the Tibetan Plateau using the Community Land Model, version 4.5 (CLM4.5), coupled with a physically based, 10-layer lake model developed by the National Center for Atmospheric Research. The CLM was forced with 10 km resolution reanalysis data to attempt to understand detailed lake processes and how these processes affect lake surface temperature. In this study, we simulated seasonal and interannual variations of lake surface temperature for Lake Qinghai, Zhaling Co, and Nam Co in the Tibetan Plateau and compared these simulations with observations. The results showed that the CLM4.5 lake model simulations reproduced the observed lake surface temperatures for Lake Qinghai and Zhaling Co well but reproduced those for Nam Co poorly. Through detailed analysis, we found that the simulated biases for Nam Co result largely from the unrealistic parameterization of eddy diffusivity. By expanding this parameter, the lake surface temperature simulations improved remarkably. In addition, erroneous lake ice cover simulations contributed to the simulated lake surface temperature bias in the cold seasons.
  • Keywords:
  • Source:
    Atmosphere-Ocean, 56(4), 289-295
  • DOI:
  • ISSN:
    0705-5900;1480-9214;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1