Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA

Filetype[PDF-3.82 MB]



Details:

  • Journal Title:
    FEMS Microbiology Ecology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Smooth cordgrass, Spartina alterniflora, dominates salt marshes on the east coast of the United States. While the physicochemical cues affecting S. alterniflora productivity have been studied intensively, the role of plant–microbe interactions in ecosystem functioning remains poorly understood. Thus, in this study, the effects of S. alterniflora phenotype on the composition of archaeal, bacterial, diazotrophic and fungal communities were investigated. Overall, prokaryotic communities were more diverse and bacteria were more abundant in the areas colonized by the tall plant phenotype in comparison to those of short plant phenotype. Diazotrophic methanogens (Methanomicrobia) preferentially colonized the area of the short plant phenotype. Putative iron-oxidizing Zetaproteobacteria and sulfur-oxidizing Campylobacteria were identified as indicator species in the rhizosphere of tall and short plant phenotypes, respectively. Finally, while diazotrophic populations shaped microbial interactions in the areas colonized by the tall plant phenotype, fungal populations filled this role in the areas occupied by the short plant phenotype. The results here demonstrate that S. alterniflora phenotype and proximity to the root zone are selective forces dictating microbial community assembly. Results further reveal that reduction–oxidation chemistry is a major factor driving the selection of belowground microbial populations in salt marsh habitats.
  • Keywords:
  • Source:
    FEMS Microbiology Ecology, 96(4)
  • DOI:
  • ISSN:
    0168-6496;1574-6941;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1