Uncertainty Calibration of Passive Microwave Brightness Temperatures Predicted by Bayesian Deep Learning Models
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Uncertainty Calibration of Passive Microwave Brightness Temperatures Predicted by Bayesian Deep Learning Models

Filetype[PDF-19.26 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Artificial Intelligence for the Earth Systems
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Visible and infrared radiance products of geostationary orbiting platforms provide virtually continuous observations of Earth. In contrast, low Earth orbiters observe passive microwave (PMW) radiances at any location much less frequently. Prior literature demonstrates the ability of a Machine Learning (ML) approach to build a link between these two complementary radiance spectra by predicting PMW observations using infrared and visible products collected from geostationary instruments, which could potentially deliver a highly-desirable synthetic PMW product with nearly continuous spatio-temporal coverage. However, current ML models lack the ability to provide a measure of uncertainty of such a product, significantly limiting its applications. In this work, Bayesian Deep Learning is employed to generate synthetic Global Precipitation Measurement (GPM) mission Microwave Imager (GMI) data from Advanced Baseline Imager (ABI) observations with attached uncertainties over the ocean. The study first uses deterministic Residual Networks (ResNets) to generate synthetic GMI brightness temperatures with as little mean absolute error as 1.72 K at the ABI spatio-temporal resolution. Then, for the same task, we use three Bayesian ResNet models to produce a comparable amount of error while providing previously unavailable predictive variance (i.e. uncertainty) for each synthetic data point. We find that the Flipout configuration provides the most robust calibration between uncertainty and error across GMI frequencies, and then demonstrate how this additional information is useful for discarding high-error synthetic data points prior to use by downstream applications.
  • Source:
    Artificial Intelligence for the Earth Systems (2023)
  • DOI:
  • ISSN:
    2769-7525
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1