A Wave-Relative Framework Analysis of AEW–MCS Interactions Leading to Tropical Cyclogenesis
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Wave-Relative Framework Analysis of AEW–MCS Interactions Leading to Tropical Cyclogenesis

Filetype[PDF-2.03 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    An African easterly wave (AEW) and associated mesoscale convective systems (MCSs) dataset has been created and used to evaluate the propagation of MCSs, AEWs, and, especially, the propagation of MCSs relative to the AEW with which they are associated (i.e., wave-relative framework). The thermodynamic characteristics of AEW–MCS systems are also analyzed. The analysis is done for both AEW–MCS systems that develop into tropical cyclones and those that do not to quantify significant differences. It is shown that developing AEWs over West Africa are associated with a larger number of convective cloud clusters (CCCs; squall-line-type systems) than nondeveloping AEWs. The MCSs of developing AEWs propagate at the same speed of the AEW trough in addition to being in phase with the trough, whereas convection associated with nondeveloping AEWs over West Africa moves faster than the trough and is positioned south of it. These differences become important for the intensification of the AEW vortex as this slower-moving convection (i.e., moving at the same speed of the AEW trough) spends more time supplying moisture and latent heat to the AEW vortex, supporting its further intensification. An analysis of the rainfall rate (MCS intensity), MCS area, and latent heating rate contribution reveals that there are statistically significant differences between developing AEWs and nondeveloping AEWs, especially over West Africa where the fraction of extremely large MCS areas associated with developing AEWs is larger than for nondeveloping AEWs.
  • Keywords:
  • Source:
    Monthly Weather Review, 148(11), 4657-4671
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1