Weather Radar Network Benefit Model for Tornadoes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Weather Radar Network Benefit Model for Tornadoes

Filetype[PDF-1.82 MB]



Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters—fraction of vertical space observed and cross-range horizontal resolution—leads to better tornado warning performance as characterized by tornado detection probability and false-alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In addition, lower false-alarm ratios save costs by cutting down on work and personal time lost while taking shelter. The model is run on the existing contiguous U.S. weather radar network as well as hypothetical future configurations. Results show that the current radars provide a tornado-based benefit of ~$490 million (M) yr−1. The remaining benefit pool is about $260M yr−1, split roughly evenly between coverage- and rapid-scanning-related gaps.
  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 58(5), 971-987
  • DOI:
  • ISSN:
    1558-8424;1558-8432;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1