Geofluid Object Workbench (GeoFLOW) for Atmospheric Dynamics in the Approach to Exascale: Spectral Element Formulation and CPU Performance
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Geofluid Object Workbench (GeoFLOW) for Atmospheric Dynamics in the Approach to Exascale: Spectral Element Formulation and CPU Performance

Filetype[PDF-17.52 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A new software framework using a well-established high-order spectral element discretization is presented for solving the compressible Navier–Stokes equations for purposes of research in atmospheric dynamics in bounded and unbounded limited-area domains, with a view toward capturing spatiotemporal intermittency that may be particularly challenging to attain using low-order schemes. A review of the discretization is provided, emphasizing properties such as the matrix product formalism and other design considerations that will facilitate its effective use on emerging exascale platforms, and a new geometry-independent, element boundary exchange method is described to maintain continuity. A variety of test problems are presented that demonstrate accuracy of the implementation primarily in wave-dominated or transitional flow regimes; conservation properties are also demonstrated. A strong scaling CPU study in a three-dimensional domain without using threading shows an average parallel efficiency of ≳99% up to 2 × 104 MPI tasks that is not affected negatively by expansion polynomial order. On-node performance is also examined and reveals that, while the primary numerical operations achieve their theoretical arithmetic intensity, the application performance is largely limited by available memory bandwidth. Significance Statement This work considers the need for computationally efficient, high-order, low dissipation numerics to fully leverage emerging exascale computing resources in an effort to examine and improve the accuracy of numerical treatments of atmospheric and weather phenomena. A new spectral element implementation is introduced that attempts to address the issues involved. Well-understood tests are presented that illustrate the known efficacy of the method in wave-dominated, quasi-laminar, and relatively strong shear flow regimes, and good conservation properties for mass and total energy are achieved. Importantly, the implementation is shown to exhibit encouraging performance characteristics.
  • Keywords:
  • Source:
    Monthly Weather Review, 151(9), 2521-2540
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1