Weather Radar Network Benefit Model for Nontornadic Thunderstorm Wind Casualty Cost Reduction
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Weather Radar Network Benefit Model for Nontornadic Thunderstorm Wind Casualty Cost Reduction

Filetype[PDF-2.02 MB]



Details:

  • Journal Title:
    Weather, Climate, and Society
  • NOAA Program & Office:
  • Description:
    An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced between radar network configurations to generate geospatial benefit density maps. This model, applied to the current contiguous U.S. weather radar network, yields a benefit estimate of $207 million (M) yr−1 relative to no radar coverage at all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about $36M yr−1. Aggregating these nontornadic thunderstorm wind results with estimates from earlier tornado and flash flood cost reduction models yields a total benefit of $1.12 billion yr−1 for the present-day radars and a remaining radar-based benefit pool of $778M yr−1.
  • Source:
    Weather, Climate, and Society, 12(4), 789-804
  • ISSN:
    1948-8327;1948-8335;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26