Contextualizing Disaster Phases Using Social Media Data: Hurricane Risk Visualizations during the Forecast and Warning Phase of Hurricane Irma
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Contextualizing Disaster Phases Using Social Media Data: Hurricane Risk Visualizations during the Forecast and Warning Phase of Hurricane Irma

Filetype[PDF-23.25 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather, Climate, and Society
  • Description:
    Common disaster-phase models provide a useful heuristic for understanding how disasters evolve, but they do not adequately characterize the transitions between phases, such as the forecast and warning phase of predictable disasters. In this study, we use tweets posted by professional sources of meteorological information in Florida during Hurricane Irma (2017) to understand how visual risk communication evolves during this transition. We identify four subphases of the forecast and warning phase: the hypothetical threat, actualized threat, looming threat, and impact subphases. Each subphase is denoted by changes in the kinds of visual risk information disseminated by professional sources and retransmitted by the public, which are often driven by new information provided by the U.S. National Weather Service. In addition, we use regression analysis to understand the impact of tweet timing, content, risk visualization and other factors on tweet retransmission across Irma’s forecast and warning phase. We find that cone, satellite, and spaghetti-plot image types are retweeted more, while watch/warning imagery is retweeted less. In addition, manually generated tweets are retweeted more than automated tweets. These results highlight several information needs to incorporate into the current NWS hurricane forecast visualization suite, such as uncertainty and hazard-specific information at longer lead times, and the importance of investigating the effectiveness of different social media posting strategies. Our results also demonstrate the roles and responsibilities that professional sources engage in during these subphases, which builds understanding of disasters by contextualizing the subphases along the transition from long-term preparedness to postevent response and recovery. Significance Statement Visual information is an important tool for communicating about evolving tropical cyclone threats. In this study, we investigate the kinds of visualizations posted by professional weather communicators on Twitter during Hurricane Irma (2017) to understand how visual information shifts over time and whether different visuals are more retweeted. We find that visual information shifts substantially in the days before Irma’s impacts, and these shifts are often driven by changes in Irma’s strength or forecast track. Our results show that cone, satellite, and spaghetti-plot visualizations are retweeted more frequently, while watch/warning imagery is retweeted less. These results help us to understand how visual information evolves during predictable disasters, and they suggest ways that visual communication can be improved.
  • Source:
    Weather, Climate, and Society, 15(4), 1049-1067
  • ISSN:
    1948-8327;1948-8335;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26