Seasonal Precipitation Influences Streamflow Vulnerability to the 2015 Drought in the Western United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Seasonal Precipitation Influences Streamflow Vulnerability to the 2015 Drought in the Western United States

Filetype[PDF-2.68 MB]



Details:

  • Journal Title:
    Journal of Hydrometeorology
  • NOAA Program & Office:
  • Description:
    Streamflow was exceptionally low in the spring and summer of 2015 across much of the western United States because of a regional drought that exploited the sensitivity of both snow- and rain-dominant rivers. Streamflow during 2015 was examined at 324 gauges in the region to assess its response to the amount, form, and seasonal timing of precipitation and the viability of using spatially aggregated, normative models to assess streamflow vulnerability to drought. Seasonal rain and spring snowmelt had the strongest effects on runoff during the same season, but their effects persisted into subsequent seasons as well. Below-normal runoff in the spring of 2015 was pervasive across the region, while distinct seasonal responses were evident in different hydroclimatic settings: January–March (winter) runoff was above normal in most snow-dominant rivers and runoff in all seasons was above normal for much of the desert Southwest. Summer precipitation contributed to summer runoff in both the Pacific Northwest and desert Southwest. A first-order model that presumes runoff is a constant fraction of precipitation (the precipitation elasticity of runoff, E = 1) could be used for assessing and forecasting runoff responses to precipitation deficits across the region, but runoff generally is more vulnerable to drought (E > 1) than predicted by a first-order model. Uncertainty in spring and summer precipitation forecasts remain critical issues for forecasting and predicting summer streamflow vulnerability to drought across much of the western United States.
  • Source:
    Journal of Hydrometeorology, 20(7), 1261-1274
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26