Improved Extratropical North Atlantic Atmosphere–Ocean Variability with Increasing Ocean Model Resolution
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Improved Extratropical North Atlantic Atmosphere–Ocean Variability with Increasing Ocean Model Resolution

Filetype[PDF-47.08 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Description:
    North Atlantic atmosphere–ocean variability is assessed in climate model simulations from HighResMIP that have low resolution (LR) or high resolution (HR) in their atmosphere and ocean model components. It is found that some of the LR simulations overestimate the low-frequency variability of subpolar sea surface temperature (SST) anomalies and underestimate its correlation with the NAO compared to ERA5. These deficiencies are significantly reduced in the HR simulations, and it is shown that the improvements are related to a reduction of intrinsic (non-NAO-driven) variability of the subpolar ocean circulation. To understand the cause of the overestimated intrinsic subpolar ocean variability in the LR simulations, a link is demonstrated between the amplitude of the subpolar ocean variability and the mean state of the Labrador–Irminger Seas. Supporting previous studies, the Labrador–Irminger Seas tend to be colder and fresher in the LR simulations compared to the HR simulations and oceanic observations from EN4. This promotes upper-ocean density anomalies in this region to be more salinity-controlled in the LR simulations versus more temperature-controlled in the HR simulations and EN4 observations. It is argued that this causes the excessive subpolar ocean variability in the LR simulations by favoring a positive feedback between subpolar upper-ocean salinity and Atlantic meridional overturning circulation (AMOC) anomalies, rather than a negative feedback between subpolar SST and AMOC anomalies as in the HR simulations. The findings overall suggest that the subpolar ocean mean state impacts the variability of the ocean circulation and SSTs, including their relationship with the atmospheric circulation, in the extratropical North Atlantic.
  • Source:
    Journal of Climate, 36(24), 8403-8424
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26