A Regime-Based Evaluation of Southern and Northern Great Plains Warm-Season Precipitation Events in WRF
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Regime-Based Evaluation of Southern and Northern Great Plains Warm-Season Precipitation Events in WRF

Filetype[PDF-7.76 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A competitive neural network known as the self-organizing map (SOM) is used to objectively identify synoptic patterns in the North American Regional Reanalysis (NARR) for warm-season (April–September) precipitation events over the Southern and Northern Great Plains (SGP/NGP) from 2007 to 2014. Classifications for both regions demonstrate contrast in dominant synoptic patterns ranging from extratropical cyclones to subtropical ridges, all of which have preferred months of occurrence. Precipitation from deterministic Weather Research and Forecasting (WRF) Model simulations run by the National Severe Storms Laboratory (NSSL) are evaluated against National Centers for Environmental Prediction (NCEP) Stage IV observations. The SGP features larger observed precipitation amount, intensity, and coverage, as well as better model performance than the NGP. Both regions’ simulated convective rain intensity and coverage have good agreement with observations, whereas the stratiform rain (SR) is more problematic with weaker intensity and larger coverage. Further evaluation based on SOM regimes shows that WRF bias varies with the type of meteorological forcing, which can be traced to differences in the diurnal cycle and properties of stratiform and convective rain. The higher performance scores are generally associated with the extratropical cyclone condition than the subtropical ridge. Of the six SOM classes over both regions, the largest precipitation oversimulation is found for SR dominated classes, whereas a nocturnal negative precipitation bias exists for classes featuring upscale growth of convection.
  • Keywords:
  • Source:
    Weather and Forecasting, 34(4), 805-831
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1