Aerosol versus Greenhouse Gas Effects on Tropical Cyclone Potential Intensity and the Hydrologic Cycle
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Aerosol versus Greenhouse Gas Effects on Tropical Cyclone Potential Intensity and the Hydrologic Cycle

Filetype[PDF-1.49 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Description:
    Aerosol cooling reduces tropical cyclone (TC) potential intensity (PI) more strongly, by about a factor of 2 per degree of sea surface temperature change, than greenhouse gas warming increases it. This study analyzes single-forcing and historical experiments from phase 5 of the Coupled Model Intercomparison Project, aiming to understand the physical mechanisms behind this difference. Calculations are done for the tropical oceans of each hemisphere during the relevant TC seasons, emphasizing multimodel means. PI theory is used to interpret the difference in the PI response to aerosol and greenhouse gas forcings in terms of three factors. The net surface turbulent heat flux (sum of the latent and sensible heat fluxes) explains half of the difference, thermodynamic efficiency explains at most a small fraction, and surface wind speed does not explain the remainder, perhaps because of the use of monthly mean data. Changes in turbulent surface heat fluxes are interpreted as responses to surface radiative flux changes in the context of the energy balance of the ocean mixed layer. Radiative kernels are used to estimate what fractions of the surface radiative flux changes are feedbacks due to temperature and water vapor changes. The greater effect of aerosol forcing occurs because shortwave forcing has a greater direct, temperature-independent component at the surface than does longwave forcing, for a forcing amplitude that provokes the same SST change. This conclusion recalls prior work on the response of precipitation to radiative forcing, and the similarities and differences between precipitation and potential intensity in this regard are discussed.
  • Source:
    Journal of Climate, 32(17), 5511-5527
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26