The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Normal modes with boundary dynamics in geophysical fluids
-
2021
-
Source: Journal of Mathematical Physics, 62(9)
Details:
-
Journal Title:Journal of Mathematical Physics
-
Personal Author:
-
NOAA Program & Office:
-
Description:Three-dimensional geophysical fluids support both internal and boundary-trapped waves. To obtain the normal modes in such fluids, we must solve a differential eigenvalue problem for the vertical structure (for simplicity, we only consider horizontally periodic domains). If the boundaries are dynamically inert (e.g., rigid boundaries in the Boussinesq internal wave problem and flat boundaries in the quasigeostrophic Rossby wave problem), the resulting eigenvalue problem typically has a Sturm–Liouville form and the properties of such problems are well-known. However, when restoring forces are also present at the boundaries, then the equations of motion contain a time-derivative in the boundary conditions, and this leads to an eigenvalue problem where the eigenvalue correspondingly appears in the boundary conditions. In certain cases, the eigenvalue problem can be formulated as an eigenvalue problem in the Hilbert space L2⊕C and this theory is well-developed. Less explored is the case when the eigenvalue problem takes place in a Pontryagin space, as in the Rossby wave problem over sloping topography. This article develops the theory of such problems and explores the properties of wave problems with dynamically active boundaries. The theory allows us to solve the initial value problem for quasigeostrophic Rossby waves in a region with sloping bottom (we also apply the theory to two Boussinesq problems with a free-surface). For a step-function perturbation at a dynamically active boundary, we find that the resulting time-evolution consists of waves present in proportion to their projection onto the dynamically active boundary.
-
Keywords:
-
Source:Journal of Mathematical Physics, 62(9)
-
DOI:
-
ISSN:0022-2488;1089-7658;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: