Proposed Empirical Entropy and Gibbs Energy Based on Observations of Scale Invariance in Open Nonequilibrium Systems
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Proposed Empirical Entropy and Gibbs Energy Based on Observations of Scale Invariance in Open Nonequilibrium Systems

  • 2017

  • Source: The Journal of Physical Chemistry A, 121(35), 6620-6629
Filetype[PDF-1.23 MB]



Details:

  • Journal Title:
    The Journal of Physical Chemistry A
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    There is no widely agreed definition of entropy, and consequently Gibbs energy, in open systems far from equilibrium. One recent approach has sought to formulate an entropy and Gibbs energy based on observed scale invariances in geophysical variables, particularly in atmospheric quantities, including the molecules constituting stratospheric chemistry. The Hamiltonian flux dynamics of energy in macroscopic open nonequilibrium systems maps to energy in equilibrium statistical thermodynamics, and corresponding equivalences of scale invariant variables with other relevant statistical mechanical variables such as entropy, Gibbs energy, and 1/(kBoltzmannT), are not just formally analogous but are also mappings. Three proof-of-concept representative examples from available adequate stratospheric chemistry observations—temperature, wind speed and ozone—are calculated, with the aim of applying these mappings and equivalences. Potential applications of the approach to scale invariant observations from the literature, involving scales from molecular through laboratory to astronomical, are considered. Theoretical support for the approach from the literature is discussed.
  • Keywords:
  • Source:
    The Journal of Physical Chemistry A, 121(35), 6620-6629
  • DOI:
  • ISSN:
    1089-5639;1520-5215;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1