Similar oyster reproduction across estuarine regions differing in carbonate chemistry
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Similar oyster reproduction across estuarine regions differing in carbonate chemistry

Filetype[PDF-530.33 KB]



Details:

  • Journal Title:
    ICES Journal of Marine Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In laboratory studies, shellfish larvae often respond negatively to augmented [CO2], but no prior tests have related wild bivalve larval performance and carbonate chemistry spatiotemporally. The geography of Willapa Bay (Washington, USA) naturally generates two distinct regions of carbonate chemistry where non-native Pacific oysters (Crassostrea gigas) dominate the intertidal fauna and successfully reproduce. On the river-influenced east side, pCO2 is higher and alkalinity lower, which both contribute to reduced aragonite saturation state (Ωaragonite 1.3–1.5) relative to the west side receiving low watershed inputs (Ωaragonite 1.8–1.9). pHsws is also >0.1 lower on the east vs. west sides. Despite this difference in field conditions, no biological signal related to carbonate chemistry was apparent in oyster reproduction based on coupled chemical–biological comparisons over three summers. Instead, survival was equal between the two sides of the bay, and settlement was equal or higher on the low-Ωaragonite, low-pH east side. In a temporal comparison of four larval cohorts, settlement differed by two orders of magnitude and increased with water temperature. These field data on oyster reproduction illustrate that population-level effects may not emerge in higher mean [CO2] conditions, with possible decoupling due to local adaptation, spatio-temporal heterogeneity, or higher sensitivity to other axes of environmental variability such as temperature.
  • Keywords:
  • Source:
    ICES Journal of Marine Science, 75(1), 340-350
  • DOI:
  • ISSN:
    1054-3139;1095-9289;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1