A Long-Term Overshooting Convective Cloud-Top Detection Database over Australia Derived from MTSAT Japanese Advanced Meteorological Imager Observations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Long-Term Overshooting Convective Cloud-Top Detection Database over Australia Derived from MTSAT Japanese Advanced Meteorological Imager Observations

Filetype[PDF-2.68 MB]



Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A 10-yr geostationary (GEO) overshooting cloud-top (OT) detection database using Multifunction Transport Satellite (MTSAT) Japanese Advanced Meteorological Imager (JAMI) observations has been developed over the Australian region. GEO satellite imagers collect spatially and temporally detailed observations of deep convection, providing insight into the development and evolution of hazardous storms, particularly where surface observations of hazardous storms and deep convection are sparse and ground-based radar or lightning sensor networks are limited. Hazardous storms often produce one or more OTs that indicate the location of strong updrafts where weather hazards are typically concentrated, which can cause substantial impacts on the ground such as hail, damaging winds, tornadoes, and lightning and to aviation such as turbulence and in-flight icing. The 10-yr OT database produced using an automated OT detection algorithm is demonstrated for analysis of storm frequency, diurnally, spatially, and seasonally relative to known features such as the Australian monsoon, expected regions of hazardous storms along the southeastern coastal regions of southern Queensland and New South Wales, and the preferential extratropical cyclone track along the Indian Ocean and southern Australian coast. A filter based on atmospheric instability, deep-layer wind shear, and freezing level was used to identify OTs that could have produced hail. The filtered OT database is used to generate a hail frequency estimate that identifies a region extending from north of Brisbane to Sydney and the Goldfields–Esperance region of eastern Western Australia as the most hail-prone regions.
  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 57(4), 937-951
  • DOI:
  • ISSN:
    1558-8424;1558-8432;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1