U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

How Momentum Coupling Affects SST Variance and Large-Scale Pacific Climate Variability in CESM

Public Domain
File Language:


Details

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The contribution of buoyancy (thermal + freshwater fluxes) versus momentum (wind driven) coupling to SST variance in climate models is a longstanding question. Addressing this question has proven difficult because a gap in the model hierarchy exists between the fully coupled (momentum + buoyancy + ocean dynamics) and slab–mixed layer ocean coupled (thermal with no ocean dynamics) versions. The missing piece is a thermally coupled configuration that permits anomalous ocean heat transport convergence decoupled from the anomalous wind stress. A mechanically decoupled model configuration is provided to fill this gap and diagnose the impact of momentum coupling on SST variance in NCAR CESM. A major finding is that subtropical SST variance increases when momentum coupling is disengaged. An “opposing flux hypothesis” may explain why the subtropics (midlatitudes) experience increased (reduced) variance without momentum coupling. In a subtropical easterly wind regime, Ekman fluxes [Formula: see text] oppose thermal fluxes [Formula: see text], such that when the air and sea are mechanically decoupled [Formula: see text], [Formula: see text] variance increases. As a result, SST variance increases. In a midlatitude westerly regime where [Formula: see text] and [Formula: see text] typically reinforce each other, SST variance is reduced. Changes in mean surface winds with climate change could impact the [Formula: see text] and [Formula: see text] covariance relationships. A by-product of mechanically decoupling the model is the absence of ENSO variability. The Pacific decadal oscillation operates without momentum coupling or tropical forcing, although the pattern is modified with enhanced (reduced) variability in the subtropics (midlatitudes). Results show that Ekman fluxes are an important component to tropical, subtropical, and midlatitude SST variance.
  • Keywords:
  • Source:
    Journal of Climate, 31(7), 2927-2944
  • DOI:
  • ISSN:
    0894-8755 ; 1520-0442
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:c1286bd6a1e6190d602225a7b0aa7d010970b06201d087773ebb6f8b79988596
  • Download URL:
  • File Type:
    Filetype[PDF - 5.94 MB ]
File Language:
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.