Diagnosing an Artificial Trend in NLDAS-2 Afternoon Precipitation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Diagnosing an Artificial Trend in NLDAS-2 Afternoon Precipitation

Filetype[PDF-4.42 MB]



Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    While investigating linkages between afternoon peak rainfall amount and land–atmosphere coupling strength, a statistically significant trend in phase 2 of the North American Land Data Assimilation System (NLDAS-2) warm season (April–September) afternoon (1700–2259 UTC) precipitation was noted for a large fraction of the conterminous United States, namely, two-thirds of the area east of the Mississippi River, during the period from 1979 to 2015. To verify and better characterize this trend, a thorough statistical analysis is undertaken. The analysis focuses on three aspects of precipitation: amount, frequency, and intensity at 6-hourly time scale and for each calendar month separately. At the NLDAS-2 native resolution of 0.125° × 0.125°, Kendall’s tau and Sen’s slope estimators are used to detect and estimate trends and the Pettitt test is used to detect breakpoints. Parallel analyses are conducted on both NARR and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), subdaily precipitation estimates. Widespread breakpoints of field significance at the α = 0.05 level are detected in the NLDAS-2 frequency and intensity series for all months and 6-h periods that are absent from the analogous NARR and MERRA-2 datasets. These breakpoints are shown to correspond with a July 1996 NLDAS-2 transition away from hourly 2° × 2.5° NOAA/CPC precipitation estimates to hourly 4-km stage II Doppler radar precipitation estimates in the temporal disaggregation of CPC daily gauge analyses. While NLDAS-2 may provide the most realistic diurnal precipitation cycle overall, users should be aware of this discontinuity and its direct effect on long-term trends in subdaily precipitation and indirect effects on trends in modeled soil moisture, surface temperature, surface energy and water fluxes, snow cover, snow water equivalent, and runoff/streamflow.
  • Keywords:
  • Source:
    Journal of Hydrometeorology, 18(4), 1051-1070
  • DOI:
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1