U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

A 13-Year Global Climatology of Tropical Cyclone Warm-Core Structures from AIRS Data



Details

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    There is uncertainty as to whether the typical warm-core structure of tropical cyclones (TCs) is featured as an upper-level warm core or not. It has been hypothesized that data from the satellite-borne Advanced Microwave Sounding Unit (AMSU) are inadequate to resolve a realistic TC warm-core structure. This study first evaluates 13 years of Atmospheric Infrared Sounder (AIRS) temperature retrieval against recent dropsonde measurements in TCs. AIRS can resolve the TC warm-core structure well, comparable to the dropsonde observations, although the AMSU-A retrievals fail to do so. Using 13-yr AIRS data in global TCs, a global climatology of the TC warm-core structure is generated in this study. The typical warm-core height is at the upper level around 300–400 hPa for all TCs and increases with TC intensity: 400 hPa (~8 km) for tropical storms, 300 hPa (~10 km) for category 1–3 hurricanes, 250–300 hPa (~10–11 km) for category 4 hurricanes, and 150 hPa (~14 km) for category 5 hurricanes. The range of warm-core height varies with TC intensity as well. A strong correlation between TC intensity and warm-core strength is found. A weaker but still significant correlation between TC intensity and warm-core height is also found.
  • Keywords:
  • Source:
    Monthly Weather Review, 147(3), 773-790
  • DOI:
  • ISSN:
    0027-0644 ; 1520-0493
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:9096628e38291d8aa274d88b38055e2488632c586a3bb1a4f6a7cfd53f500513
  • Download URL:
  • File Type:
    Filetype[PDF - 2.86 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.