Characteristics of Background Error Covariance of Soil Moisture and Atmospheric States in Strongly Coupled Land–Atmosphere Data Assimilation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Characteristics of Background Error Covariance of Soil Moisture and Atmospheric States in Strongly Coupled Land–Atmosphere Data Assimilation

Filetype[PDF-7.70 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study characterizes the spatial and temporal variability of the background error covariance between the land surface soil moisture and atmospheric states for a better understanding of the potentials of assimilating satellite soil moisture data under a framework of strongly coupled land–atmosphere data assimilation. The study uses the Noah land surface model coupled with the Weather Research and Forecasting (WRF) Model and the National Meteorological Center (NMC) method for computing the land–atmosphere background error covariance from 2015 to 2017 over the contiguous United States. The results show that the forecast errors in top-10-cm soil moisture and near-surface air potential temperature and specific humidity are correlated and relatively large during the daytime in the summer. The magnitude of the error correlation between these three states is comparable. For example, in July, the error correlation averaged over all day- and nighttime samples is −0.13 for near-surface temperature and humidity, −0.20 for surface soil moisture and near-surface temperature, and 0.15 for surface soil moisture and near-surface humidity. During the summer, the forecast errors in surface soil moisture are correlated with those of atmospheric states up to the sigma pressure level of 0.9 (approximately 900 hPa for a sea level location) with domain-mean correlations of −0.15 and 0.1 for temperature and humidity, respectively. The results suggest that assimilation of satellite soil moisture data could provide cross-variable impacts comparable to those assimilating conventional near-surface temperature and humidity data. The forecast errors of soil moisture are only marginally correlated with those of the winds.
  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 57(11), 2507-2529
  • DOI:
  • ISSN:
    1558-8424;1558-8432;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1