The High-Rank Ensemble Transform Kalman Filter
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The High-Rank Ensemble Transform Kalman Filter

Filetype[PDF-2.25 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The ensemble Kalman filter is typically implemented either by applying the localization on the background error covariance matrix (B-localization) or by inflating the observation error variances (R-localization). A mathematical demonstration suggests that for the same effective localization function, the background error covariance matrix from the B-localization method shows a higher rank than the R-localization method. The B-localization method is realized in the ensemble transform Kalman filter (ETKF) by extending the background ensemble perturbations through modulation (MP-localization). Specifically, the modulation functions are constructed from the leading eigenvalues and eigenvectors of the original B-localization matrix. Because of its higher rank than the classic R-localized ETKF, the B-/MP-localized ETKF is termed as the high-rank ETKF (HETKF). The performances of the HETKF and R-localized ETKF were compared through cycled data assimilation experiments using the Lorenz model II. The results show that the HETKF outperforms the R-localized ETKF especially for a small ensemble. The improved analysis in the HETKF is likely associated with the higher rank from the B-/MP-localization method, since its higher rank is expected to contribute more positively to alleviating the rank deficiency issue and thus improve the analysis for a small ensemble. The HETKF is less sensitive to the localization length scales and inflation factors. Furthermore, the experiments suggest that the above conclusion comparing the HETKF and R-localized ETKF does not depend on how the analyzed ensemble perturbations are subselected in the HETKF.
  • Keywords:
  • Source:
    Monthly Weather Review, 147(8), 3025-3043
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1