The Role of a Faunal Engineer, Geukensia demissa, in Modifying Carbon and Nitrogen Regulation Services in Salt Marshes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Role of a Faunal Engineer, Geukensia demissa, in Modifying Carbon and Nitrogen Regulation Services in Salt Marshes

Filetype[PDF-2.83 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Biogeosciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Interest in leveraging suspension feeders, such as marine bivalves, to exert top‐down control on organic matter (OM) loading in estuaries is gaining momentum. Not only can these faunal engineers alleviate the consequences of nutrient pollution, but they may also bolster the critical blue carbon services provided by coastal ecosystems—a potential dual, mitigating effect on cultural eutrophication and climate change. Ribbed mussels, Geukensia demissa, offer a useful model for assessing faunally driven carbon (C) and nitrogen (N) processes in these systems and their relationships with faunal density. Combining bulk geochemical analyses with Bayesian stable isotope mixing model frameworks (MixSIAR), we quantified the effect of mussels on the source and amount of organic C and N deposited to the benthic floor (i.e., sedimentation), accumulated in surface sediments, and stored in aboveground Spartina alterniflora in Georgia salt marshes. Relative to areas without mussels, mussel presence shifted the source of deposited and accumulated OM to a more allochthonous makeup; amplified the amount of deposited, but not accumulated, allochthonous and autochthonous OM; and enhanced aboveground storage of C and N. Both sources of OM accumulated in sediments as well as standing stocks of C and N were highly and positively correlated with local mussel density (ind. m−2) but unrelated to neighboring mussel density (ind. ∼25 m−2) in adjacent, non‐mussel areas. This work provides new evidence that suspension feeders, through their faunal engineering activities, can interact powerfully and synergistically with primary producers to enhance the blue carbon services of marshes and counteract coastal eutrophication.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Biogeosciences, 128(11)
  • DOI:
  • ISSN:
    2169-8953;2169-8961;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1