Changes in Physical Properties of Everglades Peat Soils Induced by Increased Salinity at the Laboratory Scale: Implications for Changes in Biogenic Gas Dynamics
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Changes in Physical Properties of Everglades Peat Soils Induced by Increased Salinity at the Laboratory Scale: Implications for Changes in Biogenic Gas Dynamics

Filetype[PDF-1.85 MB]



Details:

  • Journal Title:
    Water Resources Research
  • NOAA Program & Office:
  • Description:
    Saltwater intrusion due to sea level rise is a major concern for the Florida Everglades because it may induce shifts in ecosystem productivity and physical soil properties. However, the effects of saline water intrusion into the current carbon gas dynamics of the Everglades (particularly in terms of biogenic gas production and emissions, i.e., CH4 and CO2) are still uncertain. In this work, we present a laboratory‐based study to simulate how sea level rise may alter the physical properties (i.e., hydraulic conductivity) of peat soils from the Everglades and consequently affect the accumulation and release of biogenic gases within the peat matrix. Peat monoliths collected from the Everglades were subjected to progressive increases in salinity from a NaCl solution, and changes to the biogenic gas dynamics regime were simultaneously monitored using a combination of time‐lapse ground‐penetrating radar measurements, manometers, time‐lapse photography, and gas traps. Physical changes to the peat matrix at each salinity interval were assessed using constant head permeameter tests. Consistent with previous research, results show that a progressive increase in salinity (from fresh to saltwater) results in (1) a progressive increase in hydraulic conductivity and (2) a progressive decrease in gas content within the peat matrix (i.e., production) and gas releases. This work has implications for better understanding the potential effects of saltwater intrusion into freshwater peatland systems in the Everglades, particularly in terms of carbon gas dynamics.
  • Source:
    Water Resources Research, 56(6)
  • ISSN:
    0043-1397;1944-7973;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26