Examination of Global Midlatitude Atmospheric River Lifecycles Using an Object‐Oriented Methodology
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Examination of Global Midlatitude Atmospheric River Lifecycles Using an Object‐Oriented Methodology

Filetype[PDF-6.04 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Tracking atmospheric rivers (ARs) across their lifecycles is a field of recent interest with a multitude of emerging methodologies. The CONNected‐objECT (CONNECT) algorithm is adapted for the tracking of global midlatitude AR lifecycles and associated precipitation by implementing a seeded region growing segmentation algorithm, creating the AR‐CONNECT algorithm. To facilitate the permissiveness of the methodology, AR‐CONNECT is without hard‐coded geometric criteria yet is still shown to extract synoptic‐scale elongated objects >99.99% of the time. One of the consequences of the methodology is the ability to occasionally track atmospheric water vapor anomalies before evolving into AR geometries, effectively tracking AR genesis further back than other studies. With the aid of subdaily satellite‐derived rain data, we investigate the climatology, trends, and patterns of AR lifecycles from 1983–2016 and compare with other AR tracking studies. We find that AR frequency, genesis, and terminus locations are in generally good agreement with other AR tracking methodologies, though with key differences, and that AR frequencies in each hemisphere are determined by the number of AR hotspots. Furthermore, we uncover evidence that certain AR characteristics, such as frequency, areal extent, and duration, show evidence of increasing trends. Midlatitude precipitation uncovered by AR‐CONNECT shows contributions up to 50% over land and 65% over the ocean. Trend analysis of AR precipitation shows an increase in precipitation associated with ARs propagated by the Southern Jet Stream and ARs that traverse over the Sahara Desert, among others, but is determined not to be a driver of changes in global precipitation.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Atmospheres, 125(22)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1