Transition Between Forced and Oscillatory ENSO Behavior Over the Last Century
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Transition Between Forced and Oscillatory ENSO Behavior Over the Last Century

Filetype[PDF-2.36 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    As the largest mode of coupled climate variability, the El Niño Southern Oscillation (ENSO) carries consequences for weather patterns worldwide. Because of its impacts, and the subsequent importance of predicting when ENSO might occur, there has been lengthy research into precursor mechanisms that initiate ENSO events. In this paper, thanks to the length of the SODAsi.3 data set, we study the relation between ENSO and a subset of known precursors over 140 years (1871–2011). We uncover that the influence of North Pacific Oscillation (NPO)‐related precursors—namely the Trade Wind Charging and North Pacific Meridional Mode (TWC/NPMM)—upon ENSO is nonstationary. The TWC/NPMM‐ENSO coupling is strong from 1871 to 1920, then weakens before regaining significance from 1960 onward. Importantly, in the intervening period between 1920 and 1960, not only does the TWC/NPMM‐ENSO connection disappear, there are also no other wind‐related drivers preceding ENSO events during this period. We find that in the absence of wind‐driven precursors during this intervening period the temporal characteristics of ENSO variability itself change, as the signal oscillates within a relatively narrow 6–7‐year periodicity band. These features set this intervening period apart from what we see during the first and last periods when the ENSO signal is noisier, and its power is distributed over a wider range of periodicities spanning from 2 to 6 years. These results lead us to hypothesize that, during the last 140 years, ENSO shifted between a stochastically forced interannual mode of variability, to a multiannual, quasi‐regular one with a self‐sustained oscillation.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Atmospheres, 126(9)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1