Near‐Earth Solar Wind Forecasting Using Corotation From L5: The Error Introduced By Heliographic Latitude Offset
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Near‐Earth Solar Wind Forecasting Using Corotation From L5: The Error Introduced By Heliographic Latitude Offset

Filetype[PDF-1.36 MB]



Details:

  • Journal Title:
    Space Weather
  • NOAA Program & Office:
  • Description:
    Routine in situ solar wind observations from L5, located 60° behind Earth in its orbit, would provide a valuable input to space weather forecasting. One way to utilize such observations is to assume that the solar wind is in perfect steady state over the 4.5 days it takes the Sun to rotate 60°, and thus, near‐Earth solar wind in 4.5 days time would be identical to that at L5 today. This corotation approximation is most valid at solar minimum when the solar wind is slowly evolving. Using STEREO data, it has been possible to test L5‐corotation forecasting for a few months mostly at solar minimum, but the various contributions to forecast error cannot be disentangled. This study uses 40+ years of magnetogram‐constrained solar wind simulations to isolate the effect of latitudinal offset between L5 and Earth due to the inclination of the ecliptic plane to the solar rotational equator. Latitudinal offset error is found to be largest at solar minimum, due to the latitudinal ordering of solar wind structure. It is also a strong function of time of year: maximum at the solstices and very low at equinoxes. At solstice, the latitudinal offset alone means L5‐corotation forecasting is expected to be less accurate than numerical solar wind models, even before accounting for time‐dependent solar wind structures. Thus, a combination of L5‐corotation and numerical solar wind modeling may provide the best forecast. These results also highlight that three‐dimensional solar wind structure must be accounted for when performing solar wind data assimilation.
  • Source:
    Space Weather, 17(7), 1105-1113
  • ISSN:
    1542-7390;1542-7390;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26