Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate

Filetype[PDF-10.46 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Description:
    Estimates of the global ocean vertical velocities (Eulerian, eddy‐induced, and residual) from a dynamically consistent and data‐constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large‐scale topographic features and are generally canceled out in the conventional zonally averaged results. These “elevators” at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy‐induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large‐scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
  • Source:
    Journal of Geophysical Research: Oceans, 122(10), 8208-8224
  • ISSN:
    2169-9275;2169-9291;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26