Understanding Diatoms’ Past and Future Biogeochemical Role in High‐Latitude Seas
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Understanding Diatoms’ Past and Future Biogeochemical Role in High‐Latitude Seas

Filetype[PDF-1.79 MB]



Details:

  • Journal Title:
    Geophysical Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Because cold‐water diatoms’ baseline elemental density (BED) is substantially higher than temperate diatoms, previous polar studies may have underestimated diatoms’ contribution to elemental standing stocks, contribution to particulate organic carbon (POC) export and incorrectly modeled their susceptibility to future warming. We apply cold‐water diatom allometry to Arctic field samples and derive diatom growth rates ranging from 0.01–0.68 day−1, versus unrealistically high rates estimated using temperate diatom allometry. Reanalysis of published Southern Ocean data (Antarctic Environment and Southern Ocean Process Study and European Iron Fertilization Experiment) shows that diatom POC was significantly underestimated and diatoms could have accounted for a majority of POC export. However, during some field programs (Kerguelen Plateau), temperate allometry properly accounted for diatom biomass. We also predict that warming sea surface temperature may alter high‐latitude diatom BED, suggesting that even if abundances do not change with warming, the reduced diatom BED will likely lower the trophic‐transfer efficiency and their total carbon flow to consumers.
  • Keywords:
  • Source:
    Geophysical Research Letters, 47(1)
  • DOI:
  • ISSN:
    0094-8276;1944-8007;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1