Future Changes in Northern Hemisphere Summer Weather Persistence Linked to Projected Arctic Warming
Supporting Files
-
2021
Details
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:Understanding the response of the large‐scale atmospheric circulation to climatic change remains a key challenge. Specifically, changes in the equator‐to‐pole temperature difference have been suggested to affect the midlatitudes, potentially leading to more persistent extreme weather, but a scientific consensus has not been established so far. Here we quantify summer weather persistence by applying a tracking algorithm to lower tropospheric vorticity and temperature fields to analyze changes in their propagation speeds. We find significant links between slower propagating weather systems and a weaker equator‐to‐pole temperature difference in observations and models. By end of the century, the propagation of temperature anomalies over midlatitude land is projected to decrease by −3%, regionally strongest in southern North America (−45%) under a high emission scenario (CMIP5 RCP8.5). Even higher decreases are found (−10%, −58%) in models which project a decreasing equator‐to‐pole temperature difference. Our findings provide evidence that hot summer weather might become longer‐lasting, bearing the risk of more persistent heat extremes.
-
Keywords:
-
Source:Geophysical Research Letters, 48(4)
-
DOI:
-
ISSN:0094-8276 ; 1944-8007
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:urn:sha256:078c8b998fc0e8e4b058f345760932ebd073b8abdc8267e72c6a0df3ea7aa41d
-
Download URL:
-
File Type:
Supporting Files
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like