Type‐Dependent Impact of Aerosols on Precipitation Associated With Deep Convective Cloud Over East Asia
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Type‐Dependent Impact of Aerosols on Precipitation Associated With Deep Convective Cloud Over East Asia

Filetype[PDF-2.23 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Aerosol‐cloud‐precipitation interactions represent one of the most significant uncertainties in climate simulation and projection. In particular, the impact of aerosols on precipitation is highly uncertain due to limited and conflicting observational evidence. A major challenge is to distinguish the effects of different types of aerosols on precipitation associated with deep convective clouds, which produces most of the precipitation in East Asia. Here, we use 9‐yr observations from multiple satellite‐borne sensors and find that the occurrent frequency of heavy rain increases while that of light rain decreases with the increase of aerosol optical depth (AOD) for dust and polluted continental aerosol types. For average hourly precipitation amount, elevated smoke tends to suppress deep convective precipitation, while dust and polluted continental aerosols enhance precipitation mainly through the invigoration of deep convection. The invigoration effect is more significant for clouds with higher cloud base temperature (CBT), while no significant invigoration is observed when CBT is <12°C. A great contrast is found for the response of average hourly precipitation amount to aerosols over ocean and land. While the prevailing continental aerosol types other than smoke increase precipitation, the marine aerosols first enhance and then inhibit precipitation with the increase of AOD. Moreover, our analysis indicates that the above‐mentioned enhancement and inhibition effects on precipitation are mainly caused by aerosols themselves, rather than by the covariation of meteorological factors. These observed relationships between different aerosol types and precipitation frequency and amount provide valuable constraints on the model forecasting of precipitation.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Atmospheres, 127(2)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1