Intra‐Annual Climate Anomalies in Northwestern North America Following the 1783–1784 CE Laki Eruption
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Intra‐Annual Climate Anomalies in Northwestern North America Following the 1783–1784 CE Laki Eruption

Filetype[PDF-5.10 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The 1783–1784 CE Laki eruption in Iceland was one of the largest, in terms of the mass of SO2 emitted, high‐latitude eruptions in the last millennium, but the seasonal and regional climate response was heterogeneous in space and time. Although the eruption did not begin until early June, tree‐ring maximum latewood density (MXD) reconstructions from Alaska suggest that the entire 1783 summer was extraordinarily cold. We use high‐resolution quantitative wood anatomy, climate model simulations, and proxy systems modeling to resolve the intra‐annual climate effects of the Laki eruption on temperatures over northwestern North America. We measured wood anatomical characteristics of white spruce (Picea glauca) trees from two northern Alaska sites. Earlywood cell characteristics of the 1783 ring are normal, while latewood cell wall thickness is significantly and anomalously reduced compared to non‐eruption years. Combined with complementary evidence from climate model experiments and proxy systems modeling, these features indicate an abrupt and premature cessation of cell wall thickening due to a rapid temperature decrease toward the end of the growing season. Reconstructions using conventional annual resolution MXD likely over‐estimate total growing season cooling in this year, while ring width fails to capture this abrupt late‐summer volcanic signal. Our study has implications not only for the interpretation of the climatic impacts of the Laki eruption in North America, but more broadly demonstrates the importance of timing and internal variability when comparing proxy temperature reconstructions and climate model simulations. It further demonstrates the value of developing cellular‐scale tree‐ring proxy measurements for paleoclimatology.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Atmospheres, 126(3)
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1