Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3‐D structure and transport with application to the salinity maximum
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3‐D structure and transport with application to the salinity maximum

Filetype[PDF-10.55 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3–7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near‐surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi‐steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Oceans, 122(1), 23-41
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at

Version 3.26.1