Withering syndrome induced gene expression changes and a de-novo transcriptome for the Pinto abalone, Haliotis kamtschatkana
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Withering syndrome induced gene expression changes and a de-novo transcriptome for the Pinto abalone, Haliotis kamtschatkana

Filetype[PDF-2.74 MB]



Details:

  • Journal Title:
    Comparative Biochemistry and Physiology Part D: Genomics and Proteomics
  • Description:
    In the abalone and Candidatus Xenohaliotis californiensis (Ca. Xc) system, the Ca. Xc bacterium infects abalone digestive tissues and leads to extreme starvation and a characteristic “withering” of the gastropod foot. First identified in black abalone in California after an El Niño event, withering syndrome (WS) has caused large declines in wild black and captive white abalone on the northeastern Pacific coast, but disease resistance levels are species-, and possibly population-specific. This study compared gene expression patterns in the digestive gland of Ca. Xc-exposed and unexposed (control) Pinto abalone (Haliotis kamtschatkana), a particularly susceptible species. Lab-induced Ca. Xc infections were followed over 7 months and RNAseq was used to identify differential gene expression. Exposed Pinto abalone showed distinct changes in expression of 68 genes at 3 and 7 months post-infection relative to those in control animals. Upregulation of an orexin-like receptor (which is involved in feeding signaling) and a zinc peptidase-like region (many amino peptidases are zinc peptidases) in animals infected for 7 months indicates that animals with Ca. Xc infection may be starving and upregulating processes associated with feeding and digestion. Other groups of differentially expressed genes (DEGs) were upregulated or downregulated across control and exposed individuals over the 7-month experiment, including DEG groups that likely correspond to early disease state and to general stress response of being held in captivity. No patterns emerged in genes known to be involved in molluscan immune response, despite this being an expectation during a 7-month infection; digestion-related genes and unannotated DEGs were identified as targets for future research on potential immune response to WS in abalone.
  • Source:
    Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 41, 100930
  • ISSN:
    1744-117X
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26