i
Global‐scale convective aggregation: Implications for the Madden‐Julian Oscillation
-
2015
-
Source: Journal of Advances in Modeling Earth Systems, 7(4), 1499-1518
Details:
-
Journal Title:Journal of Advances in Modeling Earth Systems
-
Personal Author:
-
NOAA Program & Office:
-
Description:Previous work has shown that convection will self‐organize in cloud‐system‐resolving model simulations of radiative‐convective equilibrium, and it has been suggested that the convective envelope of the Madden‐Julian oscillation (MJO) may be organized by similar processes on a much larger scale. Here we present support for that hypothesis based on simulations with SP‐CAM with globally uniform SST. Without rotation, convection self‐organizes into large (∼4000 km) clusters surrounded by dry regions, while with Earth‐like rotation the model produces a robust MJO. The nonrotating aggregation and MJO are found to have similar budgets of moist static energy, both being supported by diabatic feedbacks, particularly cloud‐longwave interaction. Mechanism denial experiments show that longwave heating anomalies associated with high clouds are essential to the nonrotating aggregation, and amplify the MJO. Simulations using the conventional CAM show a weaker MJO and a much weaker tendency for nonrotating aggregation, and both MJO activity and aggregation intensity are found to increase with the entrainment rate in the deep convection parameterization.
-
Keywords:
-
Source:Journal of Advances in Modeling Earth Systems, 7(4), 1499-1518
-
DOI:
-
ISSN:1942-2466;1942-2466;
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY-NC-ND
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: