Subantarctic Mode Water Biogeochemical Formation Properties and Interannual Variability
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Subantarctic Mode Water Biogeochemical Formation Properties and Interannual Variability

Filetype[PDF-3.10 MB]



Details:

  • Journal Title:
    AGU Advances
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Subantarctic mode water (SAMW) is a key water mass for the transport of nutrients, oxygen, and anthropogenic carbon into the ocean interior. However, a lack of biogeochemical observations of SAMW properties during wintertime formation precluded their detailed characterization. Here we characterize for the first time SAMW properties across their entire wintertime formation regions based primarily on biogeochemical profiling floats. Observations show that the SAMW properties differ between the two main formation regions in the Pacific and Indian sectors of the Southern Ocean. SAMW formed in the Pacific is colder, fresher, and higher in oxygen, nitrate, and dissolved inorganic carbon (DIC) than its Indian Ocean counterpart. The relationship between potential density and biogeochemical water properties is nearly identical between the two formation regions; property differences thus predominantly reflect the difference in mean densities of SAMW formed in each region. SAMW is undersaturated in oxygen during formation, which will impact calculations of derived quantities that assume preformed oxygen saturation. SAMW is at or above atmospheric pCO2 during wintertime and therefore not a direct sink of contemporary carbon dioxide during the formation period. Results from the Biogeochemical Southern Ocean State Estimate suggest anti‐correlated interannual variability of DIC, nitrate, and oxygen between the central and southeastern Pacific formation regions similar to previously established patterns in mixed layer physical properties. This indicates that the mean properties of SAMW will vary depending on which sub‐region has a stronger formation rate, which is in turn linked to the Southern Annual Mode and the El‐Niño Southern Oscillation.
  • Keywords:
  • Source:
    AGU Advances, 4(2)
  • DOI:
  • ISSN:
    2576-604X;2576-604X;
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY-NC
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1