Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific

Filetype[PDF-1.96 MB]



Details:

  • Journal Title:
    Ecology and Evolution
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The distribution of species among spatially isolated habitat patches supports regional biodiversity and stability, so understanding the underlying processes and structure is a key target of conservation. Although multivariate statistics can infer the connectivity processes driving species distribution, such as dispersal and habitat suitability, they rarely explore the structure. Methods from graph theory, applied to distribution data, give insights into both connectivity pathways and processes by intuitively formatting the data as a network of habitat patches. We apply these methods to empirical data from the hydrothermal vent habitats of the Northwest Pacific. Hydrothermal vents are “oases” of biological productivity and endemicity on the seafloor that are imminently threatened by anthropogenic disturbances with unknown consequences to biodiversity. Here, we describe the structure of species assemblage networks at hydrothermal vents, how local and regional parameters affect their structure, and the implications for conservation. Two complementary networks were formed from an extensive species assemblage dataset: a similarity network of vent site nodes linked by weighted edges based on their pairwise assemblage similarity and a bipartite network of species nodes linked to vent site nodes at which they are present. Using these networks, we assessed the role of individual vent sites in maintaining network connectivity and identified biogeographic sub‐regions. The three sub‐regions and two outlying sites are separated by their spatial arrangement and local environmental filters. Both networks detected vent sites that play a disproportionately important role in regional pathways, while the bipartite network also identified key vent sites maintaining the distinct species assemblages of their sub‐regions. These regional connectivity pathways provide insights into historical colonization routes, while sub‐regional connectivity pathways are of value when selecting sites for conservation and/or estimating the multivent impacts from proposed deep‐sea mining.
  • Keywords:
  • Source:
    Ecology and Evolution, 12(12)
  • DOI:
  • ISSN:
    2045-7758;2045-7758;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1