Spatial and temporal variability of microplastic abundance in estuarine intertidal sediments: Implications for sampling frequency
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Spatial and temporal variability of microplastic abundance in estuarine intertidal sediments: Implications for sampling frequency

Filetype[PDF-1.73 MB]


  • Journal Title:
    Science of The Total Environment
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Microplastics (<5 mm) are well documented across shorelines worldwide; however, high variability in microplastic abundance is often observed within and among field studies. The majority of microplastic surveys to date consist of single sampling events that do not consider spatiotemporal variability as a potential confounding factor in the interpretation of their results. Therefore, these surveys may not accurately capture or reflect levels of microplastic contamination in the environment. Here, we provide the first investigation of small-scale spatial and temporal variability of microplastic abundance, distribution, and composition in the intertidal zone of an urbanized US estuary to better understand the short-term, daily spatiotemporal variability of microplastics in dynamic coastal environments. Intertidal sediment was collected from both the low and high intertidal zones of a sandy estuarine beach located in South Carolina, southeastern US every 1 to 2 days at low tide over 17 days (12 sampling events; total n = 72). Study-wide, microplastic abundance ranged from 44 to 912 microplastics/m2 and consisted primarily of polyethylene, nylon, polyester, and tire (or tyre) wear particles. High temporal variability was observed, with microplastic abundance differing significantly among sampling events (p = 0.00025), as well as among some consecutive tidal cycles occurring within 12 h of each other (p = 0.007). By contrast, low spatial variability was observed throughout the study with no significant differences in microplastic abundance detected between the low and high intertidal zones (p = 0.76). Of the environmental factors investigated, wind direction on the day of sampling had the greatest effect on temporal microplastic variability. Our results demonstrate that there can be significant temporal variability of microplastic abundance in estuarine intertidal sediments and are important for informing the methods and interpretation of future microplastic surveys in dynamic coastal environments worldwide.
  • Keywords:
  • Source:
    Science of The Total Environment, 859, 160308
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1