A global-scale multidecadal variability driven by Atlantic multidecadal oscillation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A global-scale multidecadal variability driven by Atlantic multidecadal oscillation

Filetype[PDF-8.63 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    National Science Review
  • Description:
    Observational analysis shows that there is a predominant global-scale multidecadal variability (GMV) of sea-surface temperature (SST). Its horizontal pattern resembles that of the interdecadal Pacific oscillation (IPO) in the Pacific and the Atlantic multidecadal oscillation (AMO) in the Atlantic Ocean, which could affect global precipitation and temperature over the globe. Here, we demonstrate that the GMV could be driven by the AMO through atmospheric teleconnections and atmosphere–ocean coupling processes. Observations reveal a strong negative correlation when AMO leads GMV by approximately 4–8 years. Pacemaker experiments using a climate model driven by observed AMO signals reveal that the tropical Atlantic warm SST anomalies of AMO initiate anomalous cooling in the equatorial central-eastern Pacific through atmospheric teleconnections. Anticyclonic anomalies in the North and South Pacific induce equatorward winds along the coasts of North and South America, contributing to further cooling. The upper-ocean dynamics plays a minor role in GMV formation but contributes to a delayed response of the IPO to the AMO forcing. The possible impact of the GMV on AMO was also tested by prescribing only Pacific SST in the model; however, the model could not reproduce the observed phase relationship between the AMO and the GMV. These results support the hypothesis that the Atlantic Ocean plays a key role in the multidecadal variability of global SST.
  • Source:
    National Science Review, 7(7), 1190-1197
  • ISSN:
    2095-5138;2053-714X;
  • Format:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26