Hybrid Mass Coordinate in WRF-ARW and Its Impact on Upper-Level Turbulence Forecasting
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Hybrid Mass Coordinate in WRF-ARW and Its Impact on Upper-Level Turbulence Forecasting

Filetype[PDF-20.50 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Although a terrain-following vertical coordinate is well suited for the application of surface boundary conditions, it is well known that the influences of the terrain on the coordinate surfaces can contribute to increase numerical errors, particularly over steep topography. To reduce these errors, a hybrid sigma–pressure coordinate is formulated in the Weather Research and Forecasting (WRF) Model, and its effects are illustrated for both an idealized test case and a real-data forecast for upper-level turbulence. The idealized test case confirms that with the basic sigma coordinate, significant upper-level disturbances can be produced due to numerical errors that arise as the advection of strong horizontal flow is computed along coordinate surfaces that are perturbed by smaller-scale terrain influences. With the hybrid coordinate, this artificial noise is largely eliminated as the mid- and upper-level coordinate surfaces correspond much more closely to constant pressure surfaces. In real-data simulations for upper-level turbulence forecasting, the WRF Model using the basic sigma coordinate tends to overpredict the strength of upper-air turbulence over mountainous regions because of numerical errors arising as a strong upper-level jet is advected along irregular coordinate surfaces. With the hybrid coordinate, these errors are reduced, resulting in an improved forecast of upper-level turbulence. Analysis of kinetic energy spectra for these simulations confirms that artificial amplitudes in the smaller scales at upper levels that arise with the basic sigma coordinate are effectively removed when the hybrid coordinate is used.
  • Keywords:
  • Source:
    Monthly Weather Review, 147(3), 971-985
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1